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e A novel [llumination Condition Adaptation (ICA) method aimed to
improve illumination invariance.

e A new Photo-Realistic Synthetic Illumination (PRSI) dataset enhances
training.

e [ICA refines feature points for learning-based detection under extreme
lighting changes.

e ICA improves SLAM-based localization night conditions and dynamic
illumination shifts.

e Extensive experiments validate ICA’s impact on VO accuracy and real-
world datasets.
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Abstract

Reliable local feature detection is crucial for autonomous robotics, yet dy-
namic lighting conditions often undermine performance. While traditional
algorithms struggle, deep learning has set new standards in accuracy and
adaptability for key point extraction. However, challenges persist in en-
suring robustness under variable illumination. In this paper, we propose a
novel method to enable illumination adaptation of learned feature detectors
and descriptors which can increase the applicability of existing mapping and
localization techniques. Our approach combines Photo-Realistic Synthetic
[lumination (PRSI) dataset with an Illumination Conditions Adaptation
(ICA) approach, designed to improve generalization across diverse lighting
scenarios by leveraging robust pseudo-ground truths. Extensive evaluation is
performed using HPatches and KITTI subsets for visual odometry. Results
highlight significant improvements in feature detection and description ro-
bustness, particularly in low-light conditions and abrupt lighting transitions
leading to increased localization accuracy compares to the state-of-the-art.

Keywords: Feature Point Detection, Computer Vision, Deep Neural
Networks, Illumination Invariance, Synthetic Image Dataset

1. Introduction

In the rapidly evolving field of robotics, the drive towards autonomy has
magnified the importance of robust robot localization mechanisms.
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One of the most established approaches for real-time localization relies on
the detection and tracking of distinct local feature points using RGB cam-
era sensors [1, 2, 3, 4, 5], due to their affordability, compactness, and low
energy consumption. These features serve as markers for robots to measure
movement and orientation in space, enabling tasks such as Simultaneous
Localization and Mapping (SLAM) and Visual Place Recognition (VPR),
which are crucial for applications like domestic robots and autonomous vehi-
cles [6, 7]. SLAM builds maps while navigating, and VPR allows recognition
of previously visited locations, both relying on robust feature detection under
diverse conditions.

Some of the most acknowledged methods use hand-crafted algorithms to
detect key points in images [8, 9]; however, deep learning methods, partic-
ularly Convolutional Neural Networks (CNNs), have significantly advanced
feature extraction [10]. Nevertheless, feature detection under low and highly
varying illumination remains an open research challenge, as lighting changes
can impair reliability, especially in dynamic environments [11]. To address
this challenge, synthetic datasets have emerged as a solution, providing di-
verse training data in a cost-effective and controlled manner [12, 13, 14, 15].

The motivation behind our proposal lies in enhancing the capabilities of
RGB cameras to their fullest potential, ensuring that even the most energy-
restrictive devices can achieve high levels of autonomy and environmental
awareness. To this end, we developed a new Photo-Realistic Synthetic II-
lumination (PRSI) dataset that combines the advantages of synthetic data
while also imitating real-world conditions through hyper-realistic lighting and
textures. This allows the integration of an Illumination Condition Adapta-
tion (ICA) step, which guides the training process of any learning-based local
feature extraction technique towards consistent detections and descriptions
(Fig. 1).

A preliminary version of our work was presented in [16], where the concept
of ICA was first introduced, providing sufficient matching accuracy under
severe lighting changes but struggling with general applicability across real-
world datasets, such as HPatches [17]. This paper expands upon our previous
method by providing the following novel contributions:

e Refinement of the original ICA method by utilizing a greater amount
of available information to provide better associations between features
under different illumination conditions.



A thorough hyperparameter tuning process to boost the model’s per-
formance and generalization capabilities.

e Enhancement of the PRSI dataset with increased image samples cov-
ering a wider variety of environmental changes.

e Rigorous evaluation in multiple different scenarios, including visual
odometry runs in day and night conditions.

e Release of PRSI in a publicly available repository' to further support
future research in the field of robotics vision and localization.

The rest of this paper is organized as follows: Section 2 reviews the
existing literature and methodologies relevant to our research. Section 3
provides a detailed description of our methodology and its practical applica-
tions. Section 4 details the experiments conducted to validate our approach,
while Section 5 presents the results of these experiments. Finally, Section 6
concludes our findings and suggests directions for future research.

2. Literature Review

Local-feature-based SLAM architectures are typically based on the detec-
tion of repeatable key points in the environment, which are tracked among
consecutive frames to compute an estimation of the camera’s locomotion and
the environment’s structure [5]. Traditional methods for feature detection,
such as SIFT [8], SURF[18], and ORB [19], have served as cornerstones in
the field. SIFT is probably the most acknowledged method for extracting
features from images, and it can be used to perform reliable matching be-
tween different views of an object or scene. These features are invariant to
image scale and rotation. ORB is designed to be a faster alternative to float-
ing point features, offering both efficiency and performance by combining a
fast feature point detector (FAST [20]), with a robust descriptor (BRIEF
[21]), while also incorporating orientation and scale invariance. However,
these algorithms rely on gradient-based handcrafted rules; therefore, their
performance is significantly impacted under conditions of extreme illumina-
tion variations, and low lighting [6].

I The PRSI dataset will be published upon acceptance of this paper.



In recent years, the field has shifted towards deep-learning-based methods.
Deep learning models showed improvements in the performance of feature de-
tection and description across a broad range of conditions. SuperPoint[22]
and D2-Net[23] are notable examples of these. SuperPoint employs a self-
supervised approach with pre-training on simple images to learn basic fea-
ture detection, followed by self-supervised training to match features be-
tween different images of the same scene. D2-Net uses a single CNN for
joint detection and description with dense feature extraction for each pixel,
maintaining robustness across scales and transformations. Moreover, LF-Net
[24] provides an end-to-end model for simultaneous feature detection and de-
scription, training on simulated real-world changes in viewpoint and lighting.
R2D2 [25] focuses on repeatable and reliable feature points, using a specially
designed loss function to ensure consistency across viewpoint changes. Fi-
nally, ASLFeat [26] integrates attention mechanisms to focus on informative
regions, enhancing dense feature extraction by dynamically adjusting the im-
portance of different image areas. These models advance feature detection
and description in terms of accuracy, robustness, and efficiency by leverag-
ing deep learning to address the challenges that traditional algorithms face.
However, the illumination invariance problem persists and calls for specifi-
cally designed learning procedures that dictate common landmark features
to be detected, despite any appearance changes of the scene.

Synthetic datasets are pivotal in advancing computer and robotics vision
by simulating real-world variability on demand, under extensively-controlled
conditions. Notable publicly available datasets include SYNTHIA [12], which
focuses on urban scenarios with diverse layouts, weather, and lighting condi-
tions, that are valuable for autonomous driving research. SUNCG [13] pro-
vides detailed indoor scenes with various lighting and furniture arrangements,
essential for indoor navigation and object recognition. Virtual KITTI[14]
replicates real-world KITTI[27] scenarios with controlled variability, useful
for object detection and tracking in driving contexts. As a final note, CARLA
[15], an open-source simulator, allows the creation of custom scenarios with
varying weather, lighting, and traffic conditions. Despite their strengths,
none of these datasets explicitly combine realistic lighting conditions and
image pairs from the same scene sharing exact camera poses and locomo-
tion.



3. Methodology

This section is structured into two primary parts to address the develop-
ment and implementation of our feature detection enhancements using the
ICA method. The first one focuses on our proposal’s architecture (Fig. 2),
detailing the ICA method and how it can be integrated into an existing deep
feature extraction pipeline, which for this work is based on SuperPoint [22].
This combination is critical for testing and refining the ICA’s capability to
enhance feature extraction under varying lighting conditions. The second
part of the presented methodology describes the creation and characteristics
of the PRSI dataset, designed specifically to include image pairs that cap-
ture the essential lighting condition transitions, and thus, enabling effective
training of ICA.

3.1. Architecture

3.1.1. ICA

With ICA, we aim to enhance the performance of feature detection under
varying illumination conditions; particularly, by providing consistent asso-
ciations among fully-lit and low-lit or nighttime scenarios. Given a feature
point detection input within a trainable pipeline, ICA makes use of feature
points as ground truths for the subsequent learning phases, viz., the de-
tector’s and descriptor’s refinement. This whole process is inspired by the
principles of data adaptation, specifically targeting the challenges posed by
different lighting conditions.

To implement ICA, a dataset that contains pairs of identical images cap-
tured under different lighting conditions for every scene p; is needed. Each
pi = {Iy,1;,} contains a camera measurement of a fully-lit version of the
scene (Iy,) and one of low lighting (I;,). Both images are captured from the
same position and orientation, ensuring that the geometric structures and
scene elements remain constant across the pair, with only the illumination
conditions being changed. The PRSI dataset, described in Section 3.2, fulfills
these requirements, targeting specifically the day-to-night challenge.

ICA involves several steps to adapt the detection capabilities to varying
illumination conditions. Feature points are first extracted from Iy, using any
type of feature detector. These points (Fy,) are assumed to be more reliable
than the low-lighting ones, due to the better visibility and contrast provided
by the corresponding frames [28]. Feature points from [;, are also extracted
(F7,), to capture landmarks usually visible during the night (e.g., a lit light



bulb). Subsequently, we combine Fy, and F;, and filter out duplicate points,
as well as points in very close proximity using Non-Maximum Suppression
(NMS) [29], of value 4. We apply a threshold giving more weight on the
features detected in the daily image. The final set of combined and filtered
points Fy;, from all the available p; pairs will be used as pseudo ground truths
for the subsequent detector and descriptor training.

In the following subsections, we describe the network structure adopted
within this work [22]. However, different architectures can also be adapted
to include the ICA module.

3.1.2. Network backbone

The process initiates with a series of synthetic images composed of basic
geometric shapes such as circles, squares, and triangles. These shapes act
as the foundational elements for constructing more complex patterns and
structures. Initially, the model is trained on this synthetic dataset, enabling
it to learn how to detect feature points within a controlled environment.
The training employs the following loss function, using ground truth points
generated from the edges of the synthetic shapes:
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In the above, H, and W, refer to the downsampled dimensions of the im-
ages, which are divided into 8 x 8 pixel regions. The detector operates on
X, a tensor with dimensions RH*Wex6%) producing an output of REXW).
After applying a softmax function to each channel, the dustbin compartment
(indicating the absence of a feature point) is removed, and a reshaping op-
eration converts RHexWex64) ¢4 RUIXW) = The detector’s loss function uses
a fully convolutional cross-entropy loss applied to elements xj,, within X.
The ground truth labels for the feature points, collectively termed G, have
individual components denoted as GYy,,.

This generates a heatmap that indicates the likelihood of each pixel being
a feature point for any given input image. However, due to accuracy issues
in real-world tests, a homographic adaptation step is additionally employed.
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Homographic adaptation adjusts an image [ using a predefined homography
or transformation. This process involves applying various transformations
T, such as rotations, translations, warping, and scaling, to diversify the
detection process. The original image I and the transformed ones [ are
processed by the feature detector, and the resulting heatmaps are combined
to produce the final set of feature points F. This method has been shown to
significantly enhance the feature detector’s accuracy [22]. By applying the
above homographic adaptation procedure over the Iy, and [;, samples, the
corresponding Fy, and JF;, points described in Section 3.1.1 are produced.

3.1.3. Training

The training phase involves developing a network utilizing both real and
synthetic datasets. To enhance the diversity and realism of our learning sam-
ples, we integrate the Common Objects in Context (COCO) dataset [30].
COCO is highly regarded in the computer vision community for its utility
in tasks such as object detection, segmentation, and captioning, owing to
its wide range of complex and varied images that feature numerous objects
and scenes. Although COCO includes annotations, we utilized the images
without these labels for our training. The dataset is split into approximately
82k training samples and 40k validation samples. For each sample /; from
the COCO dataset, feature points F; are extracted after homographic adap-
tation. These real-world data are combined with the synthetic ones (I and
Fi) to finally form our overall learning samples I and labels F

Our approach employs both a detection and a description encoder for
feature points. This involves a concurrent refinement process for both com-
ponents of the network. Training is guided by a multi-task loss function that
balances the tasks of detection and description. The overall loss function £
is defined as:

L= ‘Cdet +A- Ldesc . (3>

In the above, the detector’s loss Lg4.; uses the same function defined in equa-
tion 1, while the descriptor’s loss is computed as:
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H Prw denotes the transformation of the cell location py,, by the homography
H, divided by the final coordinate, a standard procedure when transitioning
between Euclidean and homogeneous coordinates. The entire set of corre-
spondences for a pair of images is denoted with S. Finally, a weight factor A
is introduced to balance the discrepancy due to the presence of more negative
correspondences compared to positive ones, and a hinge loss with positive
(m,) and negative (m,,) margins are applied.

3.2. PRSI dataset

To effectively train our proposed ICA methodology, a specialized dataset
including image pairs capturing day-to-night transitions is proposed. The
dynamic nature of these transitions presents unique challenges in feature
detection, making it important to utilize images that mirror real-world con-
ditions as closely as possible, while still maintaining low size to improve
training times and save computational power. This necessity leads to the
requirements of the PRSI dataset, which is designed to produce high-quality
yet low-resolution synthetic images (namely 640x640). The dataset is formed
with full control over camera poses, transformations, and objects within the
scene. Samples can be seen in Fig. 3. Additionally, we maintain complete
supervision over the lighting conditions. An overview of one of the sam-
ple maps formulated for this study, along with the camera path is shown in
Fig. 4.

The PRSI dataset is created using Unreal Engine 52 and Unreal Market-
place assets. To increase its applicability, three different types of scenes are
included, namely: i) indoors, ii) outdoors, and iii) urban scenes. These set-
tings are used to test and refine our training methods for feature detection.
PRSI includes 37k images for each of the day and night segments, leading to
a total of 74k image samples. To achieve high realism, high-definition tex-
tures (up to 8k resolution) are used. Rendering is done either with Lumen
or Ray-Tracing, both supported natively by Unreal Engine 5.

2Unreal Engine 5 is, at the time of writing, the latest graphics engine developed by
Epic Games (https://www.unrealengine.com/en-US/unreal-engine-5).



The day-to-night image associations are achieved through a scripted camera-
based automation system, which precisely replicates the exact sensor trans-
formations across various scenes. This systematic approach ensures that each
pair of images shares the same camera position, orientation, and environmen-
tal structure setup, yet significantly differs in lighting conditions.

4. Experiments

Our current implementation builds upon and significantly enhances the
previous approach [16], through several key improvements. In our earlier
work, which will we refer to as ICA vO for the rest of this paper, the focus
was primarily on reducing irrelevant features, leading to higher matching ac-
curacy among images with significant lighting differences. However, ICA v0
struggled with general applicability, particularly under changes in the cam-
era’s viewpoint, resulting in notably fewer feature point detections. In the
current implementation (ICA v1), hyperparameter tuning, threshold adjust-
ment, and an extended PRSI dataset are introduced to guide the training
process for both detection and description. In this section, we provide the
list of experiments we conducted to enhance the training procedure and the
trained models.

4.1. HPatches

We utilize HPatches [17] to tune and then evaluate the models on it.
HPatches include over 1k sample patches collected from various scenes, each
comprising a reference image and five variations that represent distinct trans-
formations, viewpoints, and illumination. Our experiments are divided into
two testing cases: i) one that uses the full version of HPatches and ii) one
that uses only the illumination subset.

The HPatches evaluation employs the metrics below:

e Repeatability: Calculates the ratio of correctly matched feature points
(with a distance threshold of 3 pixels) to the total number of detected
feature points. High repeatability indicates that the detector consis-
tently identifies the same points despite possible changes in the appear-
ance of the scene or the camera pose.

e Mean Localization Error (MLE): Computes the Euclidean distance
between corresponding feature points detected in different images. This



distance represents the localization error for each feature point, and it
is computed as the average among all feature point distances of the
evaluation set.

e Nearest-Neighbor mean Average Precision (mAP): Assesses the
accuracy of feature descriptors by measuring the average precision of
the nearest-neighbor matching process.

e Matching Score: Evaluates the proportion of correctly matched fea-
ture points between image pairs, showing the overall effectiveness of
the feature descriptors.

4.2. Visual Odometry

In order to assess our final system, we make use of PySlam®, an open-
source visual odometry (VO) and SLAM framework.

To evaluate the models under different lighting conditions, we use two
subsets of the KITTI dataset, namely kitti00 and kitti06 [27], which offer
precise trajectory ground truth data.

We generate low-light and night-time equivalents of the above subsets
by drawing inspiration from the approach outlined in [31]. We found that
[32] had the best results in transforming a day-time image into a night-time
one. This allowed us to generate three new datasets: two using the afore-
mentioned method (night-kitti00 and night-kitti06), and a third one
(darker-night-kitti06), generated with an image darkening algorithm we
created using OpenCV and lookup tables (LUTSs) to resemble near complete
darkness without light sources. Representative image samples are presented
in Fig. 5.

Through the above, our system evaluation within the context of VO
and SLAM was performed across five distinct sequences: (i) kitti06, (ii)
night-kitti06, (iii) night-kitti00, (iv) darker-night-kitti06, and (v)
day-to-night-kitti06. The day-to-night-kitti06 sequence transitions
between kitti06 and darker-night-kitti06 every 30 frames.

To assess the VO performance achieved through the proposed feature
extraction approach, several widely used key metrics [33] were utilized:

e Root Mean Squared Error (RMSE) in X and Y: Measures de-

viation in the ‘x‘ and ‘y‘ coordinates.

3https://github.com /luigifreda/pyslam
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e Mean Absolute Trajectory Error (ATE): Quantifies the global
deviation of the trajectory from the ground truth.

e Incremental Translation Error (ITE): Assesses errors in incremen-
tal movements between consecutive frames.

e Relative Pose Error (RPE): Measures relative errors between con-
secutive trajectory estimates.

5. Results

To properly evaluate the ICA method offering a direct measurement for
the provided performance improvement, we retrained Baseline Model on
the PRSI dataset in two distinct ways: one with the use of ICA (ICA v1),
and one without (no ICA). Both models are trained using the same images,
ensuring identical inputs.

5.1. Hyperparameter Tuning

A wide set of hyperparameters were evaluated before training our final
ICA-enabled model. Specifically, we tested different thresholds and hyperpa-
rameters to maximize the number of reliable feature points detected before
training the network with the proposed ICA module. We observed that the
repeatability and matching score both increase up to a certain point and then
decline(as shown in Fig. 6). Maximum performance is reached at a detection
threshold of 0.01 and a learning rate of 0.00007. Based on the above, we
were able to fine-tune the rest of the training process, ensuring that ICA was
experiencing the most robust set of input local image features.

5.2. Fvaluation in HPatches

The HPatches dataset (illumination and camera transformation) is used
to evaluate the general performance of our models across a variety of con-
ditions, utilizing the evaluation metrics described in Section 4.1. Alongside
ICA v1 and no ICA, we also provide the results of the Baseline Model
(the initial model without retraining or applying ICA) [22].
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Table 1: Detector Metrics (HPatches)

Model Repeatability MLE
Baseline Model 0.63 1.07
no ICA 0.58 1.10
ICA v1 0.62 1.10

Table 2: Descriptor Metrics (HPatches)

Model mAP Matching Score
Baseline Model  0.78 0.45
no ICA 0.77 0.45
ICA v1 0.82 0.51

5.2.1. Full dataset

The results of the evaluation on the whole HPatches dataset are summa-
rized in Table 1 and Table 2. ICA v1, using our proposed method (ICA), is
performing better than the similarly trained model without the use of ICA.
Although the Repeatability and MLE show moderate improvement, the gains
in mAP and Matching scores highlight the effectiveness of ICA in enhancing
the model’s performance.

5.2.2. Illumination only subset

The results on the illumination subset of HPatches are summarized in
Table 3 and Table 4. ICA v1 achieves significantly higher mAP and Match-
ing Scores than no ICA and Baseline model’s, showcasing our method’s
effectiveness in improving feature reliability under challenging illumination
conditions.

5.3. Visual Odometry Evaluation

Our final system is evaluated within the context of a SLAM architecture
for computing the visual odometry of an autonomous robot. As evidenced in
Tableb model trained with our proposed ICA architecture, offers improved
performance results in all evaluated metrics, reaching over 60% RMSE reduc-
tion in ‘x” and ‘y’ dimensions and up to 83% for the case of Mean ATE, ITE,
and RPE metrics. These improvements highlight ICA’s ability in minimizing
trajectory errors, reducing global drift, and improving local accuracy in low

12



Table 3: Detector Metrics (HPatches illumination-only)

Model Repeatability MLE
Baseline Model 0.68 0.95
no ICA 0.66 0.95
ICA v1 0.68 0.93

Table 4: Descriptor Metrics (HPatches illumination-only)

Model mAP Matching Score
Baseline Model  0.81 0.55
no ICA 0.83 0.56
ICA v1 0.86 0.61

visibility and night-time scenarios. In the kitti-06 dataset, both models
exhibited similar performance, showing that the observed improvements are
attributed to the method itself rather than the characteristics of the dataset.
For the case of day-to-night-kitti06 specifically, ICA effectively handles
extremely dynamic lighting transitions, with substantially reduced error met-
rics, showing that the same local features cannot only be used at extreme
-through static- illumination conditions; but also in cases where the lighting
significantly changes over time.

Furthermore, Fig.7 presents qualitative results of the estimated trajecto-
ries (green) as compared to the ground through (red) of the KITTI dataset.
As it can be seen, the ICA v1 is capable of computing the platform’s path
significantly more accurately, proving the significance of our method for au-
tonomous robotic missions. Finally, Figure 8 shows feature matching results
between day and night images from VO evaluation sequences. The night
images are two frames ahead in the sequence. We include three examples:
kitti06 with dark-kitti06, kitti06 with darker-kittiO6, and kitti00
with dark-kitti00, highlighting the system’s robustness in detecting and
matching features under varying illumination.

6. Conclusions

In this paper, we presented a comprehensive study on enhancing feature
detection and description under varying illumination conditions, targeting

13



Table 5: Comparison of ICA v1 and No ICA models across the test sequences.

Model Metric kitti06 night-kitti06 darker-night-kitti00 day-to-night-kitti06 night-kitti00
RMSE in X  4.38 16.32 22.92 11.14 11.94
RMSEinY  4.68 2.77 4.28 4.17 5.13

ICA vl Mean ATE 4.84 13.42 18.75 8.63 11.84
Mean ITE 1.97 36.75 112.07 19.12 9.95
Mean RPE 0.07 0.41 1.12 0.34 0.09
RMSE in X 5.99 45.98 138.59 79.29 35.52
RMSEinY 284 3.45 31.24 38.96 21.44

No ICA Mean ATE 5.04 29.42 109.26 71.17 36.30
Mean ITE 0.93 44.85 338.40 154.27 46.12
Mean RPE 0.05 0.83 4.46 1.74 0.45

autonomous robot applications that operate with a single RGB camera. We
started by expanding our preliminary implementation of the PRSI dataset,
which provides high-quality synthetic images with controlled lighting con-
ditions, ensuring reliable training data. We then expanded and refined our
ICA method, which leverages the reliable feature points detected in fully
lit images with features from the low-lighting samples to guide the training
process.

By comparing models trained with and without the use of ICA, we high-
lighted its critical role in significantly enhancing local feature detection and
matching, in addition to the visual localization performance of a SLAM ar-
chitecture especially when lighting conditions became progressively darker.
Our experiments showed improvements in key metrics such as MLE, mAP,
and matching score on the evaluation set of HPatches, as well as in the tra-
jectory errors, RMSE, mean ATE, ITE, and RPE, of the PySlam toolkit.
Our future work will explore the integration of additional sensors, such as
LIDAR, and the use of more complex datasets to further improve the ro-
bustness and applicability of our approach in a wider range of environmental
conditions.
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Figure 1: Hlustration of our proposed Illumination Conditions Adaptation (ICA) method.
Features are detected on two identical views with different illumination conditions. They
are combined, filtered, and then used as ground truths for the subsequent training.
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Figure 2: Schematic representation of Illumination Condition Adaptation (ICA) integra-
tion into the selected deep local feature extraction model. Initially, keypoints are detected
from the daytime and the equivalent nighttime image using the pre-trained detector. Ho-
mographic adaptation is then applied to each input image, generating multiple transformed
versions through rotations, translations, and scalings. The resulting heatmaps are aggre-
gated, and ICA is used to filter, combine, and impose the feature points as ground truths
for the subsequent training of our final system/

Figure 3: Sample images from our dataset demonstrating corresponding day (left) and
night (right) recordings of the same scene.



Figure 4: One of the maps used to render images for the proposed PRSI dataset.

Figure 5: Sample images from (from top to bottom): kitti06, night-kittiO6,
darker-night-kitti06, and night-kitti00.
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Figure 6: Performance metrics across different thresholds and learning rates.

(a) ICA

(b) No ICA

Figure 7: Comparison of trajectories generated by (a) ICA v1 and (b) No ICA. From
left to right: kitti06, night-kitti06, darker-night-kitti06, day-to-night-kitti06,
and night-kitti00. The red line represents the ground truth trajectory, while the green
line depicts the estimated trajectory.

Figure 8: Feature matching results between day and night images, where the night image
is two frames ahead. From left to right: kitti06 with dark-kitti06, kitti06 with
darker-kitti06, and kitti00 with dark-kitti00.
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